Qualification of a Model Checker for Avionics Software Verification
نویسندگان
چکیده
Formal methods tools have been shown to be effective at finding defects in safety-critical systems, including avionics systems in commercial aircraft. The publication of DO-178C and the accompanying formal methods supplement DO-333 provide guidance for aircraft manufacturers and equipment suppliers who wish to obtain certification credit for the use of formal methods for software development and verification. However, there are still a number of issues that must be addressed before formal methods tools can be injected into the design process for avionics systems. DO-178C requires that a tool used to meet certification objectives be qualified to demonstrate that its output can be trusted. The qualification of formal methods tools is a relatively new concept presenting unique challenges for both formal methods researchers and software developers in the aerospace industry. This paper presents the results of a recent project studying the qualification of formal methods tools. We have identified potential obstacles to their qualification and proposed mitigation strategies. We have conducted two case studies based on different qualification approaches for an open source formal verification tool, the Kind 2 model checker. The first case study produced a qualification package for Kind 2. The second demonstrates the feasibility of independently verifying the output of Kind 2 through the generation of proof certificates and verifying these certificates with a qualified proof checker, in lieu of qualifying the model checker itself.
منابع مشابه
Software Certification for Temporal Properties with Affordable Tool Qualification
It has been recognized that a framework based on proofcarrying code (also called semantic-based software certification in its community) could be used as a candidate software certification process for the avionics industry. To meet this goal, tools in the “trust base” of a proof-carrying code system must be qualified by regulatory authorities. A family of semantic-based software certification a...
متن کاملTool for Translating Simulink Models into Input Language of a Model Checker
Model Based Development (MBD) using Mathworks tools like Simulink, Stateflow etc. is being pursued in Honeywell for the development of safety critical avionics software. Formal verification techniques are well-known to identify design errors of safety critical systems reducing development cost and time. As of now, formal verification of Simulink design models is being carried out manually resul...
متن کاملReachability checking in complex and concurrent software systems using intelligent search methods
Software system verification is an efficient technique for ensuring the correctness of a software product, especially in safety-critical systems in which a small bug may have disastrous consequences. The goal of software verification is to ensure that the product fulfills the requirements. Studies show that the cost of finding and fixing errors in design time is less than finding and fixing the...
متن کاملGenerating MC/DC Adequate Test Sequences Through Model Checking
We present a method for automatically generating test sequences to satisfy MC/DC like structural coverage criteria of software behavioral models specified in state-based formalisms. The use of temporal logic for characterizing test criteria and the application of model-checking techniques for generating test sequences to those criteria have been of interest in software verification research for...
متن کاملTool Chain to Support Automated Formal Verification of Avionics Simulink Designs
Embedded systems have become an inevitable part of control systems in many industrial domains including avionics. The nature of this domain traditionally requires the highest possible degree of system availability and integrity. While embedded systems have become extremely complex and they have been continuously replacing legacy mechanical components, the amount of defects of hardware and softw...
متن کامل